If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28v^2+32v=0
a = 28; b = 32; c = 0;
Δ = b2-4ac
Δ = 322-4·28·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32}{2*28}=\frac{-64}{56} =-1+1/7 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32}{2*28}=\frac{0}{56} =0 $
| (1+p)=-5(p+1) | | x+0.07x=135.4 | | -8y-3=-6y | | y-2=-3y | | 1/2(15x+5x+24)=2(4x+1)+3x | | 4x-9(4x-9)=225 | | -12=3(1-x)-2x | | 3y+3=5y | | 2(-2x+5x-6)=-3(x+13) | | 15(x+1+15)=10(x+4+10) | | 8y2=72y | | x/9+8=2 | | 30/6+3x/6=6 | | 30/6+3x+6=6 | | 4x-40=32 | | x+30=72 | | 1/8(5x+7x)15=1/4(x-24) | | 4w+8+4w+4+4w+4+2w+11+2w-3=360 | | 2x-27=-5 | | -10+6g=4g+10 | | 9c=8c+9 | | 6+q+8=-5q-10 | | 4j-5=-j+10 | | -6w-1=-9w-7 | | -8v+3=-7v | | 20(20)=16(x+16) | | 4m=5m+4 | | -8(-4x+4)=-8+48 | | 4x-3(3x-13)=-19 | | 4s-8=5s | | 14x+7+9x+3+44=180 | | v/5+8=17 |